
Modern Development Processes and Tools
Christian G. Warden
September 14, 2015

Summary

[Software development teams] can become more productive by This was originally written for a client,
currently using Trac and Subversion,
looking to improve their development
process.

I decided to share it since other teams
might find it useful.

adopting improved processes and tools to support these process
changes. The proposed changes cover the stages of a project from
project planning, during development, and through deployment.
They also cover maintenance.

The areas to improve include Task Prioritization, Estimating Project
Duration, Tracking Project Status, Maintaining Code Quality, and Reduc-
ing Deployment Time. Specific process changes are proposed to ad-
dress each of these, along with tools to support the process changes.

Tool Monthly Annual

LiquidPlanner $290 $3,480

Git N/A n/a
GitHub $25 $300

TravisCI $129 $1,548

Balsamiq Mockups $12 $144

Total $456 $5,472

Table 1: Expected Costs

Project Planning

Two process changes are recommended during the planning phase
of a project: adopting ordinal priorities for tasks and estimating the
work required to complete each task at a granular level.

Task Prioritization

Trac supports a categorical task prioritization scheme. Tasks can be
assigned a priority of high, medium, low, etc. The problem with this
method of prioritization is that it doesn’t clearly identify the prece-
dence of tasks. When deciding which tasks should go into which
release, it is important to be able to unambiguously prioritize the
tasks. If one of two tasks cannot be completed for a release, it should
be clear which has higher priority. During development, each indi-
vidual should be clear about the next task on which they should be
working.

modern development processes and tools 2

Categorical prioritization provides some guidance, but one tends
to end up with a long list of “high priority” tasks.

Figure 1: Typical Trac ticket list

Using ordinal task priorities simply means that there is al- All project management tools that
support a kanban-style board for tasks,
including LiquidPlanner, implicitly use
an ordinal prioritization scheme.

ways a single highest priority task, then the second highest priority
one, etc. The priorities are both unambiguous and easy to change by
dragging tasks up and down.

A valuable by-product of ordinal task prioritization is that, when
combined with task estimates, a schedule for task completion can be
generated automatically.

LiquidPlanner uses ordinal prioritization.

Figure 2: Liquid Planner tasks with
estimates and anticipated completion
dates

Estimation

Task estimation is essential for planning a project to ensure it comes Estimating is hard, and most people
are over-confident. But one can become
better at estimating through practice.
Douglas Hubbard’s How to Measure
Anything (http://amzn.to/1LoFZrA)
is a good resource on estimating. The
author’s company, Hubbard Decision
Research, also offers a three-hour
calibration course for about $600 per
person.

in on-time and within budget. LiquidPlanner provides a novel ap-
proach to task estimation in which both best-case and worst-case
estimates 1 are entered for tasks. This allows the uncertainty in the

1 http://www.liquidplanner.

com/support/articles/

estimating-in-ranges/

http://amzn.to/1LoFZrA
http://www.liquidplanner.com/support/articles/estimating-in-ranges/
http://www.liquidplanner.com/support/articles/estimating-in-ranges/
http://www.liquidplanner.com/support/articles/estimating-in-ranges/

modern development processes and tools 3

estimate to be captured. This range is used as a confidence interval,
and a statistically correct timeline 2 for the project is generated based 2 http://www.liquidplanner.

com/support/articles/

reading-the-liquidplanner-schedule-bars/
on the individual task estimates.

With estimates on the assigned tasks for a project, the workload of
each of the developers can be reviewed, and tasks can be reassigned
if necessary.

Figure 3: Workload in LiquidPlanner

Requirements Gathering

Task estimation is not very valuable if the work being estimated does
not accurately reflect the requirements of the project. It is necessary
for the requirements to provide sufficient detail so that the developer
can provide accurate estimates. (Alternatively, estimates with a very
wide confidence interval can be provided, but a project plan that
estimates project duration being between one month and three years,
for example, is generally not acceptable to the project sponsor.)

Depending on the scope of the work that needs to be done, dif-

http://www.liquidplanner.com/support/articles/reading-the-liquidplanner-schedule-bars/
http://www.liquidplanner.com/support/articles/reading-the-liquidplanner-schedule-bars/
http://www.liquidplanner.com/support/articles/reading-the-liquidplanner-schedule-bars/

modern development processes and tools 4

ferent ways of providing requirements may work. For large, new
features or significant user interface redesigns, mockups 3 can be 3 Balsamiq Mockups is a good, inexpen-

sive tools for mockupsinvaluable.

Figure 4: Sample Balsamiq mockup

The important thing is that developers end up with require- The recommendations in this document
do not provide a full solution for
perfecting the requirements gathering
process, but once adopted should help
illustrate where further improvements
could be made.

For example, it might be worthwhile
to have a someone with user interface
or technical writing expertise be part
of a project to help ensure that new
features are intuitive to users. That
said, a more frequent release schedule
made possible by some of these changes
will support a more iterative approach
to development in which user feed-
back can be incorporated into future
development relatively quickly.

ments of sufficient detail so as to be able to break down the work into
tasks with acceptably narrow confidence intervals. Generally, this
means tasks that are between two and eight hours long.

During Development

Throughout the duration of a project, it is important that the project
manager and the whole team are in sync on the project status.

Tracking Project Status

As development progresses, it should be easy to track the remain-
ing amount of work remaining. Developers must adopt a process of
keeping their tasks up to date with the amount of remaining work.
LiquidPlanner makes this easy with a built-in time tracker, which au-
tomatically updates the remaining time estimates as time is recorded.

The schedule is updated automatically as each task’s esti- If time passes without any updates, the
schedule also updates automatically,
pushing the expected completion date
into the future.

mate is updated.
If a schedule starts to slip, tasks that are at risk of not being com-

pleted by the deadline are flagged in red. The tasks in the critical

modern development processes and tools 5

Figure 5: Recording Time in Liquid-
Planner

path can be highlighted, and the problems can be addressed early,
while there’s still time for mitigation.

Kanban

In addition to the standard view of tasks with anticipated completion
dates, LiquidPlanner also provides a kanban-style board. This view
is helpful in clearly identifying what each person is working on,
what’s next up to be worked on, whether any tasks are getting held
up moving through the development pipeline, or whether too much
work-in-progress is piling up.

Figure 6: Card View in LiquidPlanner

modern development processes and tools 6

Limit Work-in-Progress

Work-in-progress describes a task on which work has started, but
which has not made it through development, code review, and test-
ing yet. To make the development process more efficient and min-
imize delivery risk, it is important to minimize work-in-progress.
Because we have prioritized the most important work to be done
first, we want to ensure that this work makes it through the devel-
opment pipeline, and it ready to be deployed. We do not want work
piling up, waiting to be code reviewed or tested.

Maintaining Code Quality

In addition to optimizing the processes for managing tasks, the
time spent developing new features, fixing bugs, and getting these
changes into production can be reduced through improved tooling
and processes as well.

The overall goal is to keep release branches stable with an under-
standable history.

Develop on Feature Branches

The first step is do all development on feature branches. The work
for each task should be developed on a new branch. Git makes it
quick and easy to create branches, and track which branches have
been merged.

Pre-Merge Code Review

The next step is to do code reviews on feature branches, prior to
merging. This keeps the branch onto which the feature branch will
be merged stable, and allows updates made during the code review
process to be made on the feature branch.

GitHub also supports inline comments on commits, which
make code review comments clearer and more concise.

Automated Testing

We can also automate some of the code review process with auto-
mated testing. When using git and GitHub for development, once
development has been completed for a task, the developer opens a
pull request 4. 4 https://help.github.com/articles/

using-pull-requests/

Travis CI is a continuous integration tool that integrates
with GitHub which allows us to have tests run automatically when a

https://help.github.com/articles/using-pull-requests/
https://help.github.com/articles/using-pull-requests/

modern development processes and tools 7

Figure 7: Inline Comment Example

pull request is opened. The version of the code on the feature branch
is deployed to testing org using the checkOnly flag 5 and all of the 5 http://sforce.co/1OQXkwu

tests are run.
The status of the test run is automatically displayed within GitHub

with a link to the full test results.

Figure 8: Pull Request after tests pass
successfully in Travis CI

Commit Clean History

Finally, the commits on the feature branch can be squashed prior Git provides features for rewrit-
ing history that are very useful
http://bit.ly/1OQUaZB), but can
cause headaches if not used cor-
rectly. Fortunately, GitHub offers a
protected branches feature to mit-
igate the most common problem
associated with rewriting history
(http://bit.ly/1OQUV4O)

to merging. This allows for a clean history, which eases subsequent
maintenance when one needs to figure out why changes were made
to the code and identify the related task.

Deployment Process

Limiting work-in-progress, keeping code changes for work-in-
progress on feature branches, doing pre-merge code reviews, and
automating testing all work to simplify the deployment process.

http://sforce.co/1OQXkwu
http://bit.ly/1OQUaZB
http://bit.ly/1OQUV4O

modern development processes and tools 8

It is still necessary to perform manual, functional testing to en-
sure that the changes made meet the requirements, but our release
branches are almost always in a deployable state, to be deployed to a
QA org for full end-to-end testing or to production for hot-fixes.

Separate Patch Branch

This new model also makes it easier to maintain one branch for By convention, the mainline branch
is called ‘trunk‘ in subversion, and
‘master‘ in git.

mainline development on the next major release and a separate
branch for any urgent bug fixes to the last release.

	Summary
	Project Planning
	During Development
	Maintaining Code Quality
	Deployment Process

